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Motivation

• Locally linear methods have been shown to be useful for robot
control (e.g., learning internal models of high-dimensional systems
for feedforward control or local linearizations for optimal control &
reinforcement learning).

• A key problem is to find the “right” size of the local region for a
linearization, as in locally weighted regression.

• Existing methods* use either cross-validation techniques, complex
statistical hypothesis or require significant manual parameter tuning
for good & stable performance.

*e.g., supersmoothing (Friedman, 84), LWPR (Vijayakumar et al, 05), (Fan & Gijbels, 92 & 95)
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Quick Review of Locally Weighted Regression
• Given a nonlinear regression problem,                        , our goal is to

approximate a locally linear model at each query point xq in order to
make the prediction:

• We compute the measure of locality for each data sample with a
spatial weighting kernel K, e.g., wi = K(xi, xq, h).

• If we can find the “right” local regime for each xq, nonlinear function
approximation may be solved accurately and efficiently.
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Previous methods may:
i) Be sensitive to initial values
ii) Require tuning/setting of open parameters
iii) Be computationally involved

Weighting kernel
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Bayesian Locally Weighted Regression
• Our variational Bayesian algorithm:

i. Learns both b and the optimal h
ii. Handles high-dimensional data
iii. Associates a scalar indicator weight wi with each data sample

• We assume the following prior distributions:
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Inference Procedure

• We can treat this as an EM learning problem (Dempster & Laird, ‘77):

• We use a variational factorial approximation of the true joint posterior
distribution* (e.g., Ghahramani & Beal, ‘00) and a variational
approximation on concave/convex functions, as suggested by
(Jaakkola & Jordan, ‘00), to get analytically tractable inference.

Maximize L,where L  = log p yi ,wi ,b,z! ,h xi( )
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Important Things to Note

• For each local model, our algorithm:

i. Learns the optimal bandwidth value, h (i.e. the “appropriate”
local regime)

ii. Is linear in the number of input dimensions per EM iteration (for
an extended model with intermediate hidden variables, z,
introduced for fast computation)

iii. Provides a natural framework to incorporate prior knowledge of
the strong (or weak) presence of noise
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Experimental Results: Synthetic data
Function with discontinuity + N(0,0.3025) output noise

Function with increasing curvature + N(0,0.01) output noise
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Experimental Results: Synthetic data
Function with peak + N(0,0.09) output noise

Straight line (notice “flat” kernels are learnt)
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Experimental Results: Synthetic data

Kernel Shaping Gaussian Process regressionTarget function

2D “cross” function* + N(0, 0.01)

Kernel Shaping: Learnt Kernels

*Training data has 500 samples and mean-zero noise with variance of 0.01 added to outputs.
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Experimental Results: Robot arm data
• Given a kinematics problem for a 7 DOF robot arm:

   we want to estimate the Jacobian, J, for the purpose of establishing
the algorithm does the right thing for each local regression problem:

• For a particular local linearization problem, we compare the estimated
Jacobian using BLWR, JBLWR, to the:
• Analytically computed Jacobian, JA

• Estimated Jacobian using locally weighted regression, JLWR
(where the optimal distance metric is found with cross-validation).

p = f !( )

Input data consists of 7 arm joint angles

p = x   y [ z]
T

Resulting position of arm’s end
effector in Cartesian space
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Angular & Magnitude Differences of Jacobians
• We compare each of the estimated Jacobian matrices, JLWR & JBLWR,

with the analytically computed Jacobian, JA.

• Specifically, we calculate the angular & magnitude differences
between the row vectors of the Jacobian matrices:

• Observations:
• BLWR & LWR (with an optimally tuned distance metric) perform similarly

• The problem is ill-conditioned and not so easy to solve as it may appear.

• Angular differences for J2 are large, but magnitudes of vectors are small.

JA,1

JBLWR,1

e.g. consider the 1st row vector of JBLWR and
the 1st row vector of JA
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Conclusions

• We have a Bayesian formulation of spatially locally adaptive kernels that:

i. Learns the optimal bandwidth value, h (i.e., “appropriate” local regime)
ii. Is computationally efficient
iii. Provides a natural framework to incorporate prior knowledge of noise

level

• Extensions to high-dimensional data with redundant & irrelevant input
dimension, incremental version, embedding in other nonlinear methods,
etc. are ongoing.
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Angular & Magnitude Differences of Jacobians

0.57580.46870.107125 degreesJ3

0.04270.27800.235379 degreesJ2

0.64640.52800.112919 degreesJ1

|JBLWR,i||JA,i|abs(|JA,i|- |JBLWR,i|)∠JA,i - ∠JBLWR,iJi

Between analytical Jacobian JA & inferred Jacobian JBLWR

0.59030.46870.121627 degreesJ3

0.07340.27800.204785 degreesJ2

0.64110.52800.118216 degreesJ1

|JLWR,i||JA,i|abs(|JA,i|- |JLWR,i|)∠JA,i - ∠JLWR,iJi

Between analytical Jacobian JA & inferred Jacobian of LWR (with D=0.1) JLWR

Observations:
i) BLWR & LWR (with an optimally tuned D) perform similarly
ii) Problem is ill-conditioned (condition number is very high ~1e5).
iii) Angular differences for J2 are large, but magnitudes of vectors are small.


