A Bayesian Approach to Empirical Local Linearization for Robotics

Jo-Anne Ting¹, Aaron D'Souza², Sethu Vijayakumar³, Stefan Schaal¹

¹University of Southern California, ²Google, Inc., ³University of Edinburgh

> ICRA 2008 May 23, 2008

- Motivation
- Past & related work
- Bayesian locally weighted regression
- Experimental results
- Conclusions

Motivation

• Locally linear methods have been shown to be useful for robot control (e.g., learning internal models of high-dimensional systems for feedforward control or local linearizations for optimal control & reinforcement learning).

- A key problem is to find the "right" size of the local region for a linearization, as in locally weighted regression.
- Existing methods* use either cross-validation techniques, complex statistical hypothesis or require significant manual parameter tuning for good & stable performance.

*e.g., supersmoothing (Friedman, 84), LWPR (Vijayakumar et al, 05), (Fan & Gijbels, 92 & 95)

- Motivation
- Past & related work
- Bayesian locally weighted regression
- Experimental results
- Conclusions

Quick Review of Locally Weighted Regression

• Given a nonlinear regression problem, $y = f(\mathbf{x}) + \varepsilon$, our goal is to approximate a locally linear model at each query point x_q in order to make the prediction:

$$y_q = \mathbf{b}^T \mathbf{x}_q$$

- We compute the measure of locality for each data sample with a spatial weighting kernel *K*, e.g., $w_i = K(x_i, x_q, h)$.
- If we can find the "right" local regime for each x_q , nonlinear function approximation may be solved accurately and efficiently.

Previous methods may:

- i) Be sensitive to initial values
- ii) Require tuning/setting of open parameters
- iii) Be computationally involved

- Motivation
- Past & related work
- Bayesian locally weighted regression
- Experimental results
- Conclusions

Bayesian Locally Weighted Regression

- Our variational Bayesian algorithm:
 - i. Learns both *b* and the optimal *h*
 - ii. Handles high-dimensional data
 - iii. Associates a scalar indicator weight w_i with each data sample
- We assume the following prior distributions:

 $p(\mathbf{y}_{i} | \mathbf{x}_{i}) \sim \operatorname{Normal}(\mathbf{b}^{T} \mathbf{x}_{i}, \boldsymbol{\sigma}^{2})$ $p(\mathbf{b} | \boldsymbol{\sigma}^{2}) \sim \operatorname{Normal}(0, \boldsymbol{\sigma}^{2} \boldsymbol{\Sigma}_{\mathbf{b}0})$ $p(\boldsymbol{\sigma}^{2}) \sim \operatorname{Scaled-Inv-} \boldsymbol{\chi}^{2}(n, \boldsymbol{\sigma}_{N}^{2})$

where each data sample has a weight w_i :

$$w_{i} = \prod_{m=1}^{d} \langle w_{im} \rangle, \text{ where } p(w_{im}) \sim \text{Bernoulli} \left(\left[1 + \left(x_{im} - x_{qm} \right)^{r} h_{m} \right]^{-1} \right) \right)$$
$$h_{m} \sim \text{Gamma} \left(a_{hm}, b_{hm} \right)$$

• We can treat this as an EM learning problem (Dempster & Laird, '77):

Maximize *L*, where
$$L = \log \prod_{i=1}^{N} p(y_i, w_i, b, \psi, \mathbf{h} | x_i)$$

where
$$L = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i, \mathbf{b}, \sigma^2)^{w_i} + \sum_{i=1}^{N} \sum_{m=1}^{d} \log p(w_{im}) + \log p(\mathbf{b} | \sigma^2) + \log p(\sigma^2) + \log p(\mathbf{h})$$

 We use a variational factorial approximation of the true joint posterior distribution* (e.g., Ghahramani & Beal, '00) and a variational approximation on concave/convex functions, as suggested by (Jaakkola & Jordan, '00), to get analytically tractable inference.

$$*Q(\mathbf{b}, \boldsymbol{\psi}_z, \mathbf{h}) = Q(\mathbf{b}, \boldsymbol{\psi}_z)Q(\mathbf{h})$$

Important Things to Note

- For each local model, our algorithm:
 - i. Learns the optimal bandwidth value, h (i.e. the "appropriate" local regime)
 - ii. Is linear in the number of input dimensions per EM iteration (for an extended model with intermediate hidden variables, z, introduced for fast computation)
 - iii. Provides a natural framework to incorporate prior knowledge of the strong (or weak) presence of noise

- Motivation
- Past & related work
- Bayesian locally weighted regression
- Experimental results
- Conclusions

Experimental Results: Synthetic data

11

Experimental Results: Synthetic data

12

Experimental Results: Synthetic data

*Training data has 500 samples and mean-zero noise with variance of 0.01 added to outputs. ¹³

Experimental Results: Robot arm data

• Given a kinematics problem for a 7 DOF robot arm:

$$\mathbf{p} = \begin{bmatrix} x & y & z \end{bmatrix}^T \longrightarrow \mathbf{p} = f(\theta)$$

Resulting position of arm's end
effector in Cartesian space

Input data consists of 7 arm joint angles

we want to estimate the Jacobian, *J*, for the purpose of establishing the algorithm does the right thing for each local regression problem:

$$\frac{d\mathbf{p}}{dt} = \frac{df(\theta)}{\underbrace{d\theta}_{J=?}} \frac{d\theta}{dt}$$

- For a particular local linearization problem, we compare the estimated Jacobian using BLWR, J_{BLWR} , to the:
 - Analytically computed Jacobian, J_A
 - Estimated Jacobian using locally weighted regression, J_{LWR} (where the optimal distance metric is found with cross-validation).

Angular & Magnitude Differences of Jacobians

- We compare each of the estimated Jacobian matrices, $J_{LWR} \& J_{BLWR}$, with the analytically computed Jacobian, J_A .
- Specifically, we calculate the angular & magnitude differences between the row vectors of the Jacobian matrices:

 $J_{A,1}$ e.g. consider the 1st row vector of $J_{BLWR,1}$ and the 1st row vector of J_A

- Observations:
 - BLWR & LWR (with an optimally tuned distance metric) perform similarly
 - The problem is ill-conditioned and not so easy to solve as it may appear.
 - Angular differences for J_2 are large, but magnitudes of vectors are small.

- Motivation
- Past & related work
- Bayesian locally weighted regression
- Experimental results
- Conclusions

Conclusions

- We have a Bayesian formulation of spatially locally adaptive kernels that:
 - i. Learns the optimal bandwidth value, h (i.e., "appropriate" local regime)
 - ii. Is computationally efficient
 - iii. Provides a natural framework to incorporate prior knowledge of noise level
- Extensions to high-dimensional data with redundant & irrelevant input dimension, incremental version, embedding in other nonlinear methods, etc. are ongoing.

Angular & Magnitude Differences of Jacobians

	· · · · · · · · · · · · · · · · · · ·		DEWIN	
J_i	$\angle J_{A,i}$ - $\angle J_{BLWR,i}$	$abs(J_{A,i} - J_{BLWR,i})$	$ J_{A,i} $	J _{BLWR,i}
J_1	19 degrees	0.1129	0.5280	0.6464
J_2	79 degrees	0.2353	0.2780	0.0427
J_3	25 degrees	0.1071	0.4687	0.5758

Between analytical Jacobian J_A & inferred Jacobian J_{BLWR}

Between analytical Jacobian J_A & inferred Jacobian of LWR (with D=0.1) J_{LWR}

J_i	$\angle J_{A,i}$ - $\angle J_{LWR,i}$	$abs(J_{A,i} - J_{LWR,i})$	$ J_{A,i} $	$ J_{LWR,i} $
J_1	16 degrees	0.1182	0.5280	0.6411
J_2	85 degrees	0.2047	0.2780	0.0734
J_3	27 degrees	0.1216	0.4687	0.5903

Observations:

- i) BLWR & LWR (with an optimally tuned D) perform similarly
- ii) Problem is ill-conditioned (condition number is very high ~1e5).
- iii) Angular differences for J_2 are large, but magnitudes of vectors are small.