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Agenda

Introduction to Bayesian parameter estimation
– EM-based Joint Factor Analysis
– Automatic feature detection
– Making predictions with noiseless query points

Evaluation on a 100-dimensional synthetic dataset

Application to Rigid Body Dynamics parameter identification
– What are RBD parameters?
– Formulate it as a linear regression problem
– How to ensure physically consistent parameters?

  Relevance of high dimensional regression with input noise
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Traditional regression techniques ignore noise in input data,
for example, for linear regression*:

We are interested in parameter estimation…

* Solutions to linear problems can be easily extended to nonlinear
systems via locally weighted methods (e.g. Atkeson et al. 1997)

Unbiased regression solution Biased regression solution 

Noiseless inputs Noisy inputs
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For physical systems such as humanoid robots:
– Noisy input data, large number of input dimensions -- of which not all

is relevant

We want to control these robots using model-based controllers:

…and Prediction With Noiseless Query Points

Training Phase Testing Phaset is the desired
(noiseless) target
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Current Methods Are Unsuitable

Suitable for high
dimensional data

Unsuitable for
high dimensional
data

Accounts for input noiseIgnores input noise

???
• LASSO & Stepwise
regression (Tibshirani
1996, Draper & Smith
1981)

• Total LS/Orthogonal LS
(e.g. Golub & VanLoan 1998,
Hollerbach & Wampler 1996)

• Joint Factor Analysis (JFA)
(Massey 1965):
computationally prohibitive in
high dimensions

• OLS with robust
matrix inversion (e.g.
Belsley et al. 1980):
O(d2) at best
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Relevance of high dimensional regression with input noise

– EM-based Joint Factor Analysis
– Automatic feature detection
– Making predictions with noiseless query points

Evaluation on a 100-dimensional synthetic dataset

Application to Rigid Body Dynamics parameter identification
– What are RBD parameters?
– Formulate it as a linear regression problem
– How to ensure physically consistent parameters?

Agenda

  Introduction to Bayesian parameter estimation
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Computationally Prohibitive?
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EM-based JFA: All EM update equations are O(d)

yi = zim + !ym=1

d

"

z
im

= wzmtim + !mm=1

d

"

Not Any More!

Introduce hidden
variables, zim
(D’Souza et al. 2004)
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…but Remember the Important Parameters
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Divide (1) by (2) to get: This is the solution
to the regression
problem y=bTx --
which is what we
need for prediction

JFA
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Coupled regularization of regression parameters
Still O(d) per EM iteration

Next, We Add Automatic Feature Detection

Priors:
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For a noisy test input xq and its unknown output yq,

For a noiseless test input tq and its unknown output yq,

Making Predictions with Noiseless Query
Points
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Relevance of high dimensional regression with input noise

Introduction to Bayesian parameter estimation
– EM-based Joint Factor Analysis
– Automatic feature detection
– Making predictions using noiseless query points

Application to Rigid Body Dynamics parameter identification
– What are RBD parameters?
– Formulate it as a linear regression problem
– How to ensure physically consistent parameters?

Agenda

  Evaluation on a 100-dimensional synthetic dataset
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Construction of 100-dimensional dataset
Constructed data with
– 10 relevant dimensions
– 90 redundant and/or irrelevant dimensions

Explored different combinations of redundant (r) and irrelevant
(u) dimensions
– r = 90, u = 0:   90 redundant dimensions
– r = 0, u = 90:   90 irrelevant dimensions
– r = 30, u = 60
– r = 60, u = 30

Tested on strongly noisy (SNR=2) and less noisy (SNR=5) data

Predicted outputs with noiseless test inputs
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10-70% Improvement for Strongly Noisy
Data (SNR=2)

Bayesian parameter estimation generalizes 10-70% better
 for strongly noisy data
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…and 7-50% better for less noisy data

7-50% Improvement on Less Noisy Data
(SNR=5)
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Relevance of high dimensional regression with input noise

Introduction to Bayesian parameter estimation
– EM-based Joint Factor Analysis
– Automatic feature detection
– Making predictions with noiseless query points

Evaluation on a 100-dimensional synthetic dataset

– What are RBD parameters?
– Formulate it as a linear regression problem
– How to ensure physically consistent parameters?

Agenda

  Application to Rigid Body Dynamics parameter identification
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Using Newton-Euler equations for a rigid body, we get the RBD
equation (where q are joint angles):

M, C and G are functions of mass, centre of mass and moments
of inertia -- all which are unknown; q’s and τ are known

We can re-express the above linearly as:

What are Rigid Body Dynamics (RBD)
Parameters?

Centripetal & Coriolis terms

 
! =M q( )&&q+C &q,q( )+G q( )

Mass matrix Vector of gravity terms

 
! =Y q, &q,&&q( )"
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RBD parameters:
– Must satisfy physical constraints (positive mass, positive definite

inertia matrix)

– But.. not all parameters are identifiable due to insufficiently rich data
& constraints of the physical system (i.e. data is ill-conditioned)

Formulate RBD Parameter Identification As
A Linear Regression Problem

(e.g. An et al. 1988)

 
! =Y q, &q,&&q( )"

! = [m,  mcx ,  mcy ,  mcz ,  I11,  I12 ,  I13,  I22 ,  I23,  I33]
T

where the RBD
parameters are…
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To enforce physical constraints on   , introduce virtual
parameters    :

Consequently, for real world systems, we have a noisy, high
dimensional, ill-conditioned linear regression problem

Specifically, a High Dimensional Noisy
Linear Regression Problem
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• 11 features per DOF
• For a system with s DOF,
  there are 11s features
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Find physically consistent robust parameter estimates that are as
close to       as possible

Do a constraint optimization step to find          :

Finally, ensure redundant/irrelevant dimensions in       remain so
in

How to Ensure Our Robust Parameter
Estimates are Physically Consistent?

!̂optimal = argmin
!̂
w b̂true " f !̂( )#
$

%
&
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m
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10-20% Improvement on Robotic
Oculomotor Vision Head

FAILUREFAILUREFAILUREStepwise regression

0.42740.25170.0308LASSO regression

0.32920.21890.0243Bayesian de-noising

0.39690.24650.0291Ridge regression

Feedback (Nm)Velocity(rad/s)Position(rad)Algorithm

Root Mean Squared Errors

7 DOFs: 3 in neck, 2 in each eye
11 features per DOF; total of 77 features
RBD parameter estimates from ALL algorithms
satisfy physical constraints
Bayesian de-noising does ~10-20% better



ICML 2006 21

Root Mean Squared Errors

10 DOFs: 3 in shoulder, 1 in elbow, 3 in wrist,
3 in fingers
11 features per DOF; total of 110 features
Bayesian de-noising does ~5-17% better

5-17% Improvement on Robotic
Anthropomorphic Arm

FAILUREFAILUREFAILUREStepwise regression

FAILUREFAILUREFAILURELASSO regression

0.52970.09300.0201Bayesian de-noising

0.58390.11190.0210Ridge regression

Feedback (Nm)Velocity(rad/s)Position(rad)Algorithm
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Summary

Bayesian treatment of Joint Factor Analysis that performs
parameter estimation with noisy input data

O(d) complexity per EM iteration

Automatic feature detection through joint regularization of
both regression branches

Significant improvement on synthetic data and real-world
systems


