Bayesian Regression with Input Noise for High Dimensional Data

Jo-Anne Ting¹, Aaron D'Souza², Stefan Schaal¹

¹University of Southern California, ²Google, Inc.

June 26, 2006

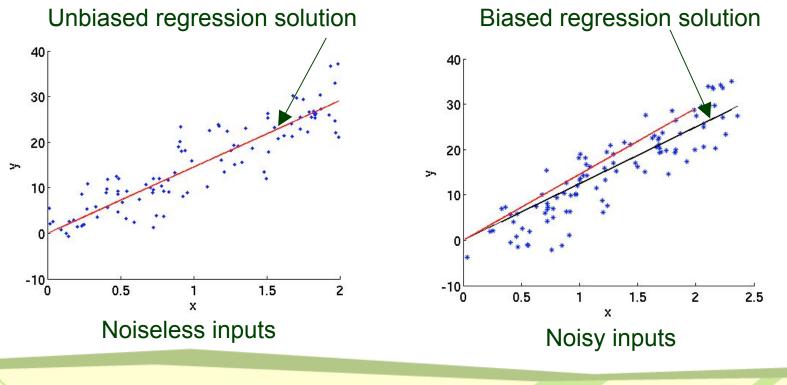
Agenda

* Relevance of high dimensional regression with input noise

- * Introduction to Bayesian parameter estimation
 - EM-based Joint Factor Analysis
 - Automatic feature detection
 - Making predictions with noiseless query points
- * Evaluation on a 100-dimensional synthetic dataset
- * Application to Rigid Body Dynamics parameter identification
 - What are RBD parameters?
 - Formulate it as a linear regression problem
 - How to ensure physically consistent parameters?

We are interested in parameter estimation...

* Traditional regression techniques ignore noise in input data, for example, for linear regression*:



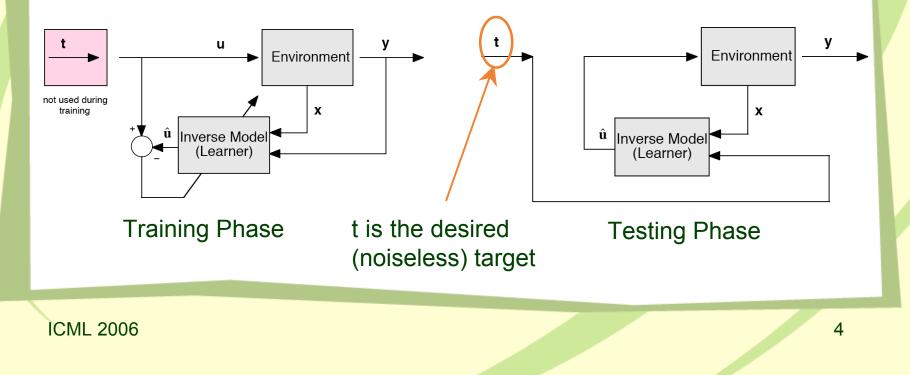
* Solutions to linear problems can be easily extended to nonlinear systems via locally weighted methods (e.g. Atkeson et al. 1997)

...and Prediction With Noiseless Query Points

* For physical systems such as humanoid robots:

 Noisy input data, large number of input dimensions -- of which not all is relevant

* We want to control these robots using model-based controllers:



Current Methods Are Unsuitable

	Ignores input noise	Accounts for input noise	
Unsuitable for high dimensional data	 OLS with robust matrix inversion (e.g. Belsley et al. 1980): O(d²) at best 	 Total LS/Orthogonal LS (e.g. Golub & VanLoan 1998, Hollerbach & Wampler 1996) Joint Factor Analysis (JFA) (Massey 1965): computationally prohibitive in high dimensions 	
Suitable for high dimensional data	 LASSO & Stepwise regression (Tibshirani 1996, Draper & Smith 1981) 	???	

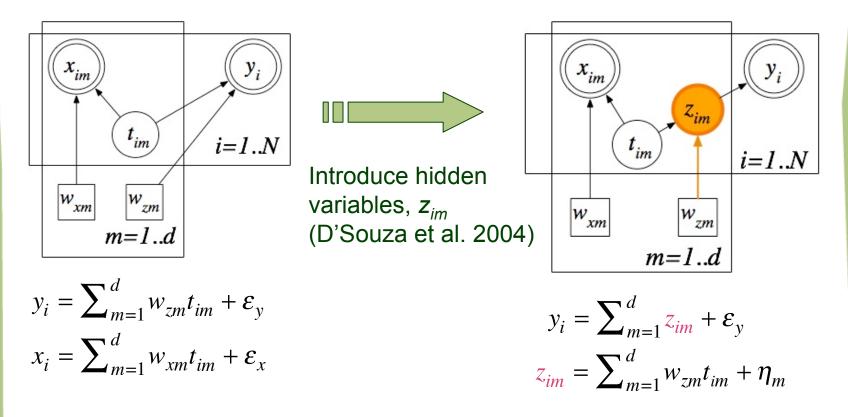
Agenda

* Relevance of high dimensional regression with input noise

* Introduction to Bayesian parameter estimation

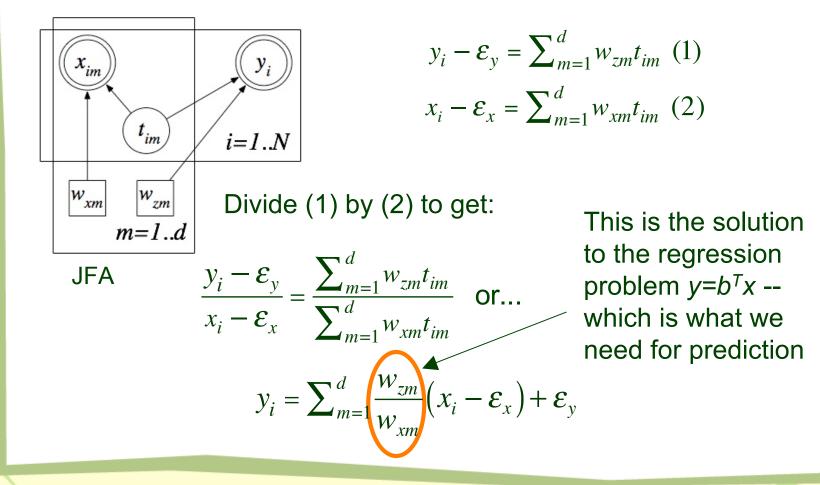
- EM-based Joint Factor Analysis
- Automatic feature detection
- Making predictions with noiseless query points
- * Evaluation on a 100-dimensional synthetic dataset
- * Application to Rigid Body Dynamics parameter identification
 - What are RBD parameters?
 - Formulate it as a linear regression problem
 - How to ensure physically consistent parameters?

Computationally Prohibitive? Not Any More!

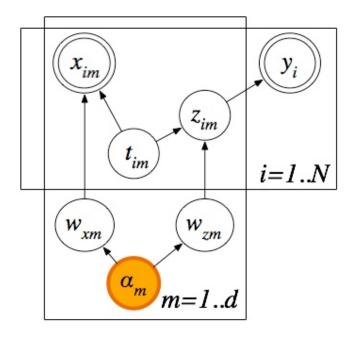


EM-based JFA: All EM update equations are O(d)

...but Remember the Important Parameters



Next, We Add Automatic Feature Detection



Priors:

 $p(\alpha_m) = \text{Gamma}(a_m, b_m)$ $p(w_{zm}|\alpha_m) = \text{Normal}\left(0, \frac{1}{\alpha_m}\right)$ $p(w_{xm}|\alpha_m) = \text{Normal}\left(0, \frac{1}{\alpha_m}\right)$

Coupled regularization of regression parameters
 Still O(d) per EM iteration

Making Predictions with Noiseless Query **Points**

For a noisy test input x^q and its unknown output y^q , $\hat{b}_{noise} = ?$

 $p(y^{q}|\mathbf{x}^{q}) = \int \int p(y^{q}, \mathbf{Z}, \mathbf{T}|\mathbf{x}^{q}) d\mathbf{Z} d\mathbf{T}$ $\langle y^{q}|\mathbf{x}^{q} \rangle = \hat{b}_{noise}^{T} x^{q}$ We can infer: $\hat{b}_{noise} = \frac{\psi_{y} \mathbf{1}^{T} \mathbf{B}^{-1}}{\psi_{y} - \mathbf{1}^{T} \mathbf{B} \mathbf{1}} \Psi_{z}^{-1} \langle \mathbf{W}_{z} \rangle \mathbf{A}^{-1} \langle \mathbf{W}_{x} \rangle^{T} \Psi_{x}^{-1}$

* For a noiseless test input t^q and its unknown output y^q , $\hat{b}_{true} = ?$

10

Agenda

* Relevance of high dimensional regression with input noise

- * Introduction to Bayesian parameter estimation
 - EM-based Joint Factor Analysis
 - Automatic feature detection
 - Making predictions using noiseless query points

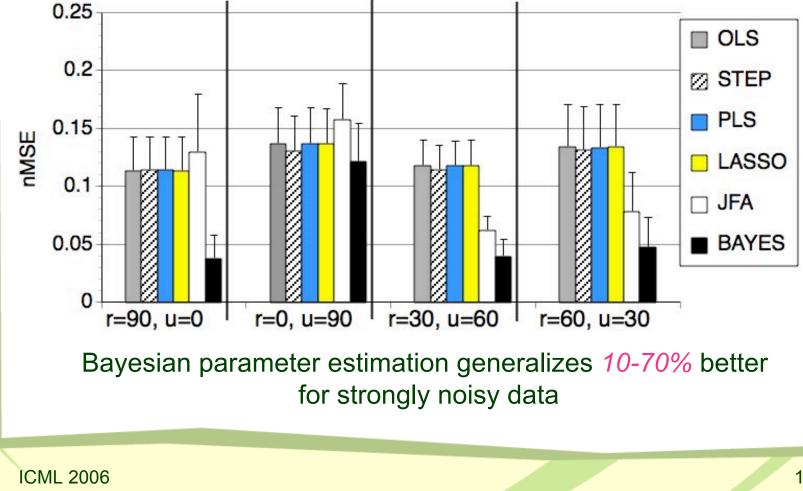
* Evaluation on a 100-dimensional synthetic dataset

- * Application to Rigid Body Dynamics parameter identification
 - What are RBD parameters?
 - Formulate it as a linear regression problem
 - How to ensure physically consistent parameters?

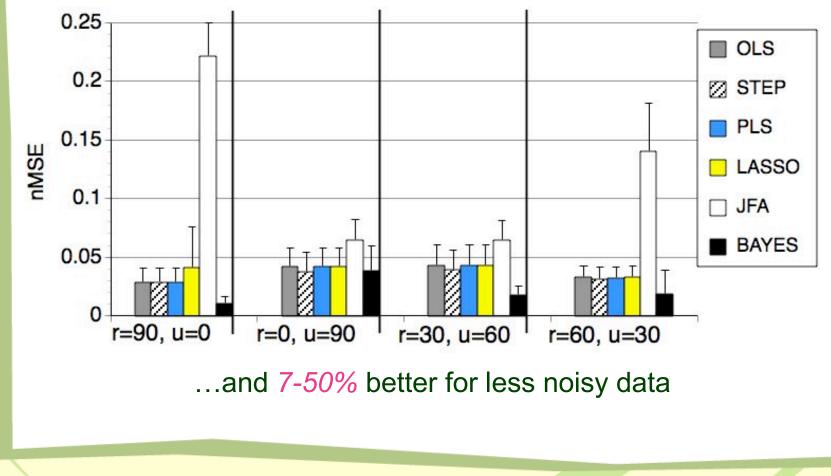
Construction of 100-dimensional dataset

- * Constructed data with
 - 10 relevant dimensions
 - 90 redundant and/or irrelevant dimensions
- Explored different combinations of redundant (r) and irrelevant
 (u) dimensions
 - r = 90, u = 0: 90 redundant dimensions
 - r = 0, u = 90: 90 irrelevant dimensions
 - r = 30, u = 60
 - r = 60, u = 30
- * Tested on strongly noisy (SNR=2) and less noisy (SNR=5) data
- * Predicted outputs with noiseless test inputs

10-70% Improvement for Strongly Noisy Data (SNR=2)



7-50% Improvement on Less Noisy Data (SNR=5)



Agenda

* Relevance of high dimensional regression with input noise

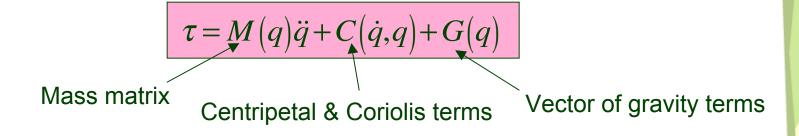
- * Introduction to Bayesian parameter estimation
 - EM-based Joint Factor Analysis
 - Automatic feature detection
 - Making predictions with noiseless query points
- * Evaluation on a 100-dimensional synthetic dataset

* Application to Rigid Body Dynamics parameter identification

- What are RBD parameters?
- Formulate it as a linear regression problem
- How to ensure physically consistent parameters?

What are Rigid Body Dynamics (RBD) Parameters?

* Using Newton-Euler equations for a rigid body, we get the RBD equation (where q are joint angles):



- * *M*, *C* and *G* are functions of mass, centre of mass and moments of inertia -- all which are unknown; q's and τ are known
- * We can re-express the above linearly as:

$$\tau = Y(q, \dot{q}, \ddot{q})\theta$$

Formulate RBD Parameter Identification As A Linear Regression Problem

(e.g. An et al. 1988)

$$au = Y(q, \dot{q}, \ddot{q}) heta$$

where the RBD parameters are...

$$\theta = [m, mc_x, mc_y, mc_z, I_{11}, I_{12}, I_{13}, I_{22}, I_{23}, I_{33}]^T$$

\star RBD parameters:

- Must satisfy physical constraints (positive mass, positive definite inertia matrix)
- But.. not all parameters are identifiable due to insufficiently rich data & constraints of the physical system (i.e. data is ill-conditioned)

Specifically, a High Dimensional Noisy Linear Regression Problem

* To enforce physical constraints on θ , introduce virtual parameters $\hat{\theta}$:

$$\theta_{1} = \hat{\theta}_{1}^{2}, \ \theta_{2} = \hat{\theta}_{2}\hat{\theta}_{1}^{2}, \ \theta_{3} = \hat{\theta}_{3}\hat{\theta}_{1}^{2}$$

$$\theta_{4} = \hat{\theta}_{4}\hat{\theta}_{1}^{2}, \ \theta_{5} = \hat{\theta}_{5}^{2} + \left(\hat{\theta}_{4}^{2} + \hat{\theta}_{3}^{2}\right)\hat{\theta}_{1}^{2}$$

$$\theta_{6} = \hat{\theta}_{5}\hat{\theta}_{6} - \hat{\theta}_{2}\hat{\theta}_{3}\hat{\theta}_{1}^{2}, \ \theta_{7} = \hat{\theta}_{5}\hat{\theta}_{7} - \hat{\theta}_{2}\hat{\theta}_{4}\hat{\theta}_{1}^{2}$$

$$\theta_{8} = \hat{\theta}_{6}^{2} + \hat{\theta}_{8}^{2} + \left(\hat{\theta}_{2}^{2} + \hat{\theta}_{4}^{2}\right)\hat{\theta}_{1}^{2}$$

$$\theta_{9} = \hat{\theta}_{6}\hat{\theta}_{7} + \hat{\theta}_{8}\hat{\theta}_{9} - \hat{\theta}_{3}\hat{\theta}_{4}\hat{\theta}_{1}^{2}$$

$$\theta_{10} = \hat{\theta}_{7}^{2} + \hat{\theta}_{9}^{2} + \hat{\theta}_{10}^{2} + \left(\hat{\theta}_{2}^{2} + \hat{\theta}_{3}^{2}\right)\hat{\theta}_{1}^{2}, \ \theta_{11} = \hat{\theta}_{11}^{2}$$

 11 features per DOF
 For a system with s DOF, there are 11s features

* Consequently, for real world systems, we have a noisy, high dimensional, ill-conditioned linear regression problem

How to Ensure Our Robust Parameter Estimates are Physically Consistent?

* Find physically consistent robust parameter estimates that are as close to \hat{b}_{true} as possible

* Do a constraint optimization step to find $\hat{\theta}_{optimal}$:

$$\hat{\theta}_{optimal} = \arg\min_{\hat{\theta}} w \left[\hat{b}_{true} - f(\hat{\theta}) \right]$$

where $w_m = 0$ if dimension *m* is not relevant and $w_m = 1$ otherwise

Finally, ensure redundant/irrelevant dimensions in \hat{b}_{true} remain so in $\theta_{optimal}$

10-20% Improvement on Robotic Oculomotor Vision Head

- * 7 DOFs: 3 in neck, 2 in each eye
- * 11 features per DOF; total of 77 *features*
- RBD parameter estimates from ALL algorithms satisfy physical constraints
- * Bayesian de-noising does ~10-20% better

Root Mean Squared Errors

Algorithm	Position(rad)	Velocity(rad/s)	Feedback (Nm)
Ridge regression	0.0291	0.2465	0.3969
Bayesian de-noising	0.0243	0.2189	0.3292
LASSO regression	0.0308	0.2517	0.4274
Stepwise regression	FAILURE	FAILURE	FAILURE

5-17% Improvement on Robotic Anthropomorphic Arm

- * 10 DOFs: 3 in shoulder, 1 in elbow, 3 in wrist,
 3 in fingers
- * 11 features per DOF; total of *110 features*
- K Bayesian de-noising does ∼5-17% better

Root Mean Squared Errors

Algorithm	Position(rad)	Velocity(rad/s)	Feedback (Nm)
Ridge regression	0.0210	0.1119	0.5839
Bayesian de-noising	0.0201	0.0930	0.5297
LASSO regression	FAILURE	FAILURE	FAILURE
Stepwise regression	FAILURE	FAILURE	FAILURE

Summary

- * Bayesian treatment of Joint Factor Analysis that performs parameter estimation with noisy input data
- \star O(d) complexity per EM iteration
- * Automatic feature detection through joint regularization of both regression branches
- * Significant improvement on synthetic data and real-world systems