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a b s t r a c t

For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking
while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom
lightweight systems, conventional identification of rigid body dynamics models using CAD data and
actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method
is data-driven parameter estimation, but significant noise in measured and inferred variables affects it
adversely. Moreover, standard estimation procedures may give physically inconsistent results due to
unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing
a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor
Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm
that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and
output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems,
achieving an error of up to three times lower than other state-of-the-art machine learning methods.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Learning the equations of motion of a complex physical
system for the purpose of control is a common problem in
robotics. A typical system identification approach first collects a
representative data set from the robot by measuring positions and
motor commands during some explorative movements. Then, we
can obtain velocity and acceleration information by numerically
differentiating position data. The data can also be digitally filtered
to reduce noise. As a third step, we apply a function approximator
to learn the mapping from positions, velocities and accelerations
to motor commands. Such a function often has hundreds of inputs
for complex robots. Finally, this mapping can be inserted into the
control loop of the robot, where appropriate motor commands
are predicted from the desired position, velocity and acceleration
information—all of which are noiseless data.
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The sample scenario above is representative for a large number
of system identification problems. From a machine learning point
of view, the interesting components are that the learning data
is high dimensional, has irrelevant and redundant dimensions
and, despite digital filtering, usually contains a significant amount
of noise in the inputs to the function approximator. Moreover,
predictions are required from noiseless input data, since inputs
generated during control originate fromaplanning systemwithout
noise. The quality of control strongly depends on the quality of the
learned internal model in advanced controllers and is critical in
many robotic applications such as haptic devices, surgical robotics,
and safe compliant assistive robots in human environments.

Ideally, system identification can be performed based on the
CAD data of a robot provided by the manufacturer, at least in
the context of rigid body dynamic (RBD) systems—which will
be the exemplary scope of this paper. However, many modern
lightweight robots such as humanoid robots have significant
additional nonlinear dynamics beyond the rigid body dynamics
model, due to actuator dynamics, routing of cables, use of
protective shells and other sources. In such cases, instead of trying
to explicitly model all possible nonlinear effects in the robot,
empirical system identification methods appear to be more useful.
Under the assumption that a rigid body dynamics (RBD) model
is sufficient to capture the entire robot’s dynamics, this problem
is theoretically straightforward as all unknown parameters of
the robot such as mass, center of mass and inertial parameters
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appear linearly in the rigid body dynamics equations (An, Atkeson,
& Hollerbach, 1988). Hence, after appropriate re-arrangement of
the RBD equations of motion, parameter identification can be
performed with linear regression techniques.

In this paper, we address the problem above in the context
of linear regression, since an extension to nonlinear regression is
straightforwardusing locallyweighted learningmethods (Atkeson,
Moore, & Schaal, 1997). If we wanted to use traditional linear
regression techniques for this scenario, we would encounter
several deficiencies. First, for high dimensional robotic systems, it
is not easy to generate sufficiently rich data so that all parameters
will be properly identifiable. As a result, the regression problem
for RBD parameter estimation is almost always numerically
ill-conditioned and bears the danger of generating parameter
estimates that strongly deviate from the true values, despite a
seemingly low error fit of the data. For such ill-conditioned data
sets in high dimensional spaces, most traditional linear regression
techniques break down numerically since they are unable to
generate sparse and unbiased solutions identifying redundant
and/or irrelevant dimensions.

Second, sensory data collected from a robot is noisy. Noise
sources exist in both input and output data, and this effect
is additionally amplified by numerical differentiation to obtain
derivative data. Even digital filtering will always leave some noise
in the signals in order to avoid oversmoothing of data. Traditional
linear regression techniques like Ordinary Least Squares (OLS)
regression are only capable of dealing with noise in the output
data, and the presence of input noise introduces a persistent
bias to the regression solution. Alternative methods such as
Total Least Squares (TLS) (Golub & Van Loan, 1989; Van Huffel
& Vanderwalle, 1991) – otherwise known as orthogonal-least
squares regression (Hollerbach & Wampler, 1996) or, in statistics,
as errors-in-variables (EIV) when applied to a linear model (Van
Huffel & Lemmerling, 2002) – address input noise, but they assume
that the variances of input noise and output noise are the same
(Rao & Principe, 2002). In real-world systems, this assumption is
not necessarily true and, again, the resulting estimates will be
biased, leading to inferior generalization.

Finally, there is no mechanism in the regression problem for
RBD model identification that ensures the identified parameters
are physically plausible. Particularly in the light of insufficiently
rich data and nonlinearities beyond the RBD model, one often
encounters physically incorrectly identified parameters such as
negative values on the diagonal of an inertia matrix.

Various methods exist to deal with some of the problems men-
tioned above, such as regression based on singular-value decom-
position (SVD) or ridge regression to cope with ill-conditioned
data (Belsley, Kuh, & Welsch, 1980), stepwise regression (Draper
& Smith, 1981) and LASSO (Least Absolute Shrinkage and Selec-
tion Operator) regression (Tibshirani, 1996) to produce sparse so-
lutions, or TLS/orthogonal-least squares/EIV to address input noise
(Hollerbach &Wampler, 1996). Nevertheless, a comprehensive ap-
proach addressing the entire set of issues has not been suggested
so far. Recent work such as (Rao, Erdogmus, Rao, & Principe, 2003)
has addressed the problem of input noise, but in the context of sys-
tem identification of a time-series, while ignoring the problems as-
sociated with ill-conditioned data in high dimensional spaces. In
this paper, we suggest a Bayesian estimation approach to the RBD
parameter estimation problem that has all the desired properties
below:

• Explicitly identifies input and output noise in the data.
• Is robust in face of ill-conditioned data.
• Detects non-identifiable parameters.
• Produces physically correct parameter estimates.

A key inspiration of our novel technique is a recently developed
Bayesian machine learning framework that enables us to recast

OLS regression in an advanced algorithm for input noise clean-
up and numerical robustness, especially for very high dimensional
estimation problems. A post-processing step ensures that the
rigid body parameters are physically consistent by nonlinearly
projecting the results of the Bayesian estimate onto the constraints.
We will sketch the derivation of this algorithm and compare
its performance with other approaches in the context of the
identification of RBD parameters on synthetic data and real robotic
data. On synthetic data, our algorithm achieves up to 300%
improvement over other methods, and on the actual robot data we
observed about 5%–25% higher accuracy in a parameter estimation
problem for rigid body dynamics.

This paper is structured as follows. First, we motivate the prob-
lem of input noise in linear regression applications and identify
possible solutions. Then, based on these insights, we introduce a
novel estimation technique that incorporates input noise detection
and uses Bayesian regularization methods to ensure robustness to
ill-conditioned data. Third, we add a post-processing step to our
algorithm that enforces physical correctness of the estimated RBD
parameters. Finally, we evaluate our approach for parameter esti-
mation on synthetic data and on a RBD parameter estimation for
two robotic platforms: a 7 degree-of-freedom (DOF) robotic vision
head and a 10 DOF robotic anthropomorphic arm.

2. High dimensional regression with input noise

Let us examine some of the problems associated with tra-
ditional system identification methods before introducing our
de-noising solution. We embed our discussions in the context of
RBD parameter estimation—a problem that is linear in the open
parameters despite the high level of nonlinearity of the RBD equa-
tions of motion. We discuss general nonlinear system identifica-
tion at the end of this paper.

The general RBD equations ofmotions are (Sciavicco & Siciliano,
1996):
M (q) q̈ + C (q, q̇) q̇ + G (q) = τ (1)
where q, q̇, q̈ denote the vectors of joint positions, velocities, and
accelerations, respectively. The matrix M(q) is the RBD inertia
matrix, the matrix C(q, q̇) has terms about coriolis and centripetal
forces, and the vector G(q) represents torques due to gravity.
Eq. (1) has one row for every degree-of-freedom (DOF) of the robot,
e.g., 30–50 rows for a humanoid robot. Every DOF is physically
characterized by at least 10 parameters: amass parameter, a center
of mass vector, and a positive definite inertia matrix; friction
parameters can increase the number of parameters. Thus, for
robot systems with many DOFs, identifying RBD parameters is a
problem involving hundreds of dimensions. Interestingly, these
parameters appear linearly in Eq. (1), such that, after some complex
rearrangement of the terms in Eq. (1), the system identification
problem for RBD becomes a linear regression problem.

We can now switch to viewing this system identification
problem from the stance of machine learning. Let us assume we
have a data set {xi, yi}Ni=1 consisting ofN samples, where xi ∈ ℜ

d×1

(d is the dimensionality of the input data) and yi is a scalar. As
mentioned previously, the RBD equations can be re-arranged to
yield this structure. We create amatrix X ∈ ℜ

N×d, where the input
vectors xi are arranged in the rows of X, and a vector y ∈ ℜ

N×1,
where the corresponding scalar outputs yi are coefficients of y. A
generalmodel for linear regressionwith noise-contaminated input
and output data are then:

yi =

d−
m=1

wzmtim + ϵyi

xim = wxmtim + ϵxim

(2)

where ti is noiseless input data composed of tim elements, wz
and wx are regression vectors composed ofwzm andwxmelements,



J.-A. Ting et al. / Neural Networks ( ) – 3

respectively, and ϵy and ϵx are additive mean-zero Gaussian noise.
Only X and y are observable. Note that if the input data is noise-
less (i.e., xim = wxmtim), we obtain the familiar linear regression
equation of yi = βT

OLSxi + ϵyi , where βOLS = wzm/wxm. The slightly
more general formulation in Eq. (2) with distinct wxm and wzm
coefficients will be useful in preparing our new algorithm.

The OLS estimate of the regression vector βOLS is (XTX)−1XTy,
where βOLS is composed of the parameters wz and wx, as
discussed above. The first major issue with OLS regression in high
dimensional spaces is that the full rank assumption of (XTX)−1 is
often violated due to under-constrained data sets. For more than
500 input dimensions, the matrix inversion required in OLS also
becomes rather expensive. Ridge regression can fix the problem
of ill-conditionedmatrices by introducing an uncontrolled amount
of bias. There exist also alternative methods to invert the matrix
more efficiently (Hastie & Tibshirani, 1990; Strassen, 1969), as
for instance through singular value decomposition factorization
(Belsley et al., 1980). Nevertheless, all these methods are unable to
model noise in input data and require the manual tuning of meta
parameters, which can strongly influence the quality of estimation
results.

If we examine Eq. (2), we see that if the input data is
noiseless (i.e., xim = wxmtim), the true regression vector βOLS will
be composed of the coefficientswzm/wxm. This is exactly what the
OLS estimate of the regression vector will be for noiseless input
data. However, when the input data are contaminated with noise,
it can be shown that the OLS estimate will be βOLS,noise = γβtrue,
where 0 < γ < 1 and the exact value of γ depends on the amount
of input noise. Thus, OLS regression underestimates the regression
vector and produces biased predictions, a problem that cannot be
fixed by adding more training data.

Intentionally, the input/output noise model formulation in
Eq. (2) was chosen such that it coincides with a version of a
Factor Analysis (Massey, 1965) tailored for regression problems.
The intuition of this model is given in Fig. 1(a): every observed
input xim and output yi is assumed to be generated by a set of
hidden variables tim and contaminatedwith some noise, as given in
Eq. (2). The graphical model in Fig. 1(a) compactly describes the
full multi-dimensional system: the variables xim, tim, wxm andwzm
are duplicated d times for the d input dimensions of the data—
as represented by the four nodes in the plate indexed by m. The
other plate, indexed by i, shows that there are N samples of
observed {xi, yi} data. The goal of learning is to find the parameters
wxm and wzm, which can only be achieved by estimating the
hidden variables tim and the variances of all random variables.
For technical reasons, it needs to be assumed that all tim follow a
Normal distribution with mean zero and unit variance, i.e., tim ∼

Normal(0, 1), such that all parameters of the model are well-
constrained (the degrees of freedom in the system needs to be
constrained so that there are unique solutions for the factor loading
parameterswz andwx).

The specific version of factor analysis for regression depicted
in Fig. 1(a) is called joint-space Factor Analysis regression or
Joint Factor Analysis (JFA) regression, as both input and output
variables are treated the same in the estimation process (i.e.,
only their joint distribution matters). While Joint Factor Analysis
regression is well-suited for modeling regression problems with
noisy input data, it does not handle ill-conditioned data very
well and is computationally expensive for high dimensions due
to a repeated high dimensional matrix inversion in the ensuing
iterative estimation procedure.

In the following section, we will develop a Bayesian treatment
of Joint Factor Analysis regression that is robust to ill-conditioned
data, automatically detects non-identifiable parameters, detects
noise in input and output data and, finally, due to some post-
processing, produces physically consistent parameters for RBD in
a computationally inexpensive manner.

3. Bayesian parameter estimation of noisy linear regression

Fig. 1 illustrates the successive modifications of the graphical
model needed to derive a Bayesian version of Joint Factor Analysis
regression.

3.1. EM-based joint factor analysis regression

To start, we introduce the hidden variables zim such that zim =

wzmtim. This trick, introduced by D’Souza, Vijayakumar, and Schaal
(2004), allows us to avoid any form of matrix inversion in the
resulting learning algorithm. With this modification, the noisy
linear regression model in Eq. (2) becomes:

yi =

d−
m=1

zim + ϵyi

zim = wzmtim + ϵzim
xim = wxmtim + ϵxim

(3)

where ϵz is additive mean-zero Gaussian noise and only X and
y are observable. Due to the hidden variables zim and tim, we
formulate the estimation of all open parameters as a maximum
likelihood problem using the Expectation-Maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977). For this purpose, we
make the following standard assumptions about the underlying
probability distributions:

yi|zi ∼ Normal(1T zi, ψy)

zim|tim, wzm ∼ Normal(wzmtim, ψzm)

xim|tim, wxm ∼ Normal(wxmtim, ψxm)

tim ∼ Normal(0, 1)

(4)

where 1 = [1, 1, . . . , 1]T , zi ∈ ℜ
d×1 is composed of zim elements,

wz ∈ ℜ
d×1 is composed of wzm elements, and wx, ψz and ψx are

similarly composed of wxm, ψzm and ψxm elements, respectively.
As Fig. 1(b) shows, the regression coefficients wzm are now
behind the fan-in to the output yi. This new formulation of
Joint Factor Analysis regression decouples the input dimensions
and generates a learning algorithm that operates with O(d)
computational complexity per EM iteration, where d is number
of input dimensions, instead of O(d3) as in traditional Joint Factor
Analysis regression.

3.2. Automatic feature detection

The efficient maximum likelihood formulation of Joint Factor
Analysis regression is, however, still vulnerable to ill-conditioned
data. Thus, we introduce a Bayesian layer on top of this model
by treating the regression parameters wz and wx probabilistically
to protect against overfitting, as shown in Fig. 1(c). To do
this, we introduce so-called ‘‘precision’’ variables αm over each
regression parameter wzm. The same αm is also placed over each
wxm, leading to a coupled regularization of wzm and wxm. As a
result, the regression parameters are now distributed as wzm ∼

Normal(0, 1/αm) andwxm ∼ Normal(0, 1/αm), where αm takes on
a Gamma distributionwith parameters aαm and bαm , shown below:

p(wz |α) =

d∏
m=1

αm

2π

 1
2
exp


−
αm

2
w2

zm


p(wx|α) =

d∏
m=1

αm

2π

 1
2
exp


−
αm

2
w2

xm


p(α) =

d∏
m=1

baαmαm
Γ (aαm)

α
(aαm−1)
m exp{−bαmαm}.

(5)
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(a) Joint Factor Analysis (JFA)
regression.

(b) A modified model of JFA
regression for efficient estimation.

(c) A Bayesian version of JFA regression.

Fig. 1. Graphical models for noisy linear regression. Random variables are in circular nodes, observed random variables are in double circles and point estimated parameters
are in square nodes. d is the total number of input dimensions while N is the total number of samples in the dataset.

The rationale of this Bayesian modeling technique is as follows.
The key quantity that determines the relevance of a regression
input is the parameter αm. A priori, we assume that every wzm
has a mean-zero distribution with broad variance 1/αm. We also
assume that the precision αm has an initial value 1 with large
variance by setting both the initial values of aαm and bαm to 10−6.
If the posterior value of αm turns out to be very large after all
model parameters are estimated, then the corresponding posterior
distribution ofwzm must be sharply peaked at zero. Thus, this gives
strong evidence that wzm = 0 and that the input tm contributes
no information to the regression model. If an input tm contributes
no information to the output, then it is also irrelevant how much
it contributes to xim. That is to say, the corresponding inputs xm
could be treated as pure noise. Coupling both wzm and wxm with
the same precision variable αm accomplishes exactly this effect. In
this way, the Bayesian approach automatically detects irrelevant
input dimensions and regularizes against ill-conditioned data sets.

Even with the Bayesian layer added, the entire regression prob-
lem can be treated as an EM-like learning problem (Ghahramani &
Beal, 2000). Our goal is to maximize the log likelihood log p(y|X),
which is often called an ‘‘incomplete’’ log likelihood, as all hidden
probabilistic variables are marginalized out. However, due to ana-
lytical problems, we do not have access to this incomplete log like-
lihood, but rather only to a lower bound of it. This lower bound is
based on an expected value of the so-called ‘‘complete’’ data like-
lihood, ⟨log p(y, Z, T,wz,wx,α|X)⟩,1 formulated over all variables
of the learning problem, where:

log p(y, Z, T,wz,wx,α|X) =

N−
i=1

log p(yi|zi)

+

N−
i=1

d−
m=1

log p(zim|wzm, tim)+

N−
i=1

d−
m=1

log p(xim|wxm, tim)

+

N−
i=1

d−
m=1

log p(tim)+

d−
m=1

log {p(wzm|αm)p(αm)}

+

d−
m=1

log {p(wxm|αm)p(αm)} + consty,Z,T,wz ,wx,α (6)

and where Z ∈ ℜ
N×d with the vector zi in its rows and T ∈ ℜ

N×d

with the vector ti in its rows. The expectation of this complete
data likelihood should be taken with respect to the true poste-
rior distribution of all hidden variables Q (α,wz,wx, Z, T). Unfor-
tunately, this is an analytically intractable expression. Instead, a

1 Note that ⟨ ⟩ denotes the expectation operator.

lower bound can be formulated using a technique from variational
calculus where wemake a factorial approximation of the true pos-
terior in terms of: Q (α,wz,wx, Z, T) = Q (α)Q (wz)Q (wx)Q (Z, T).
Such a variational factorial approximation (Ghahramani & Beal,
2000) allows us to derive analytically tractable update equations
for fast, efficient inference, thus, avoiding computationally inten-
siveMonte Carlo sampling of integrals. Variational approximations
trade off accuracy over computation time. While losing a small
amount of accuracy, all resulting posterior distributions over hid-
den variables now become analytically tractable and have the fol-
lowing distributions:

yi|zi ∼ Normal(1T zi, ψy)

zim|tim, wzm ∼ Normal(wzmtim, ψzm)

wzm|αm ∼ Normal(0, 1/αm)

wxm|αm ∼ Normal(0, 1/αm)

αm ∼ Gamma(âαm , b̂αm).

(7)

As a result, we now have a mechanism that infers the significance
of each dimension’s contribution to the observed output y and
observed inputs X.

We can derive the EM update equations using standard
manipulations of Gaussian and Gamma distributions (the Gamma
distribution is analytically convenient since it is a conjugate
distribution for the Gaussian precision, e.g., (Ting et al., 2005),
reaching the following:

E-step:

σ 2
wzm

=
1

1
ψzm

N∑
i=1

⟨t2im⟩ + ⟨αm⟩

(8)

⟨wzm⟩ =
σ 2
wzm

ψzm

N−
i=1

⟨zimtim⟩ (9)

σ 2
wxm

=
1

1
ψxm

N∑
i=1

⟨t2im⟩ + ⟨αm⟩

(10)

⟨wxm⟩ =
σ 2
wxm

ψxm

N−
i=1

xim⟨tim⟩ (11)

âαm = aαm0 + 1 (12)

b̂αm = bαm0 +
⟨w2

zm⟩ + ⟨w2
xm⟩

2
(13)
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M-step:

ψy =
1
N

N−
i=1


y2i − 21yi⟨zi⟩ + 1T

⟨zizTi ⟩1


(14)

ψzm =
1
N

N−
i=1


⟨z2im⟩ − 2⟨wzm⟩⟨zimtim⟩ + ⟨w2

zm⟩⟨t2im⟩


(15)

ψxm =
1
N

N−
i=1


x2im − 2⟨wxm⟩⟨tim⟩xim + ⟨w2

xm⟩⟨t2im⟩


(16)

where the covariance matrix, 6, of the joint posterior distribution
of Z and T is


6zz 6zt
6tz 6tt


,with:

6zz = M −
M11TM

ψy + 1TM1
(17)

6tt = K−1
+ K−1

⟨Wz⟩
T9−1

z 6zz9
−1
z ⟨Wz⟩K−1 (18)

6zt = −6zz⟨Wz⟩9
−1
z K−1 (19)

6tz = 6T
zt (20)

K = I + ⟨WT
xWx⟩9

−1
x + ⟨WT

zWz⟩9
−1
z (21)

M = 9z + ⟨Wz⟩

I + ⟨WT

xWx⟩9
−1
x + (6Wz )mm9−1

z

−1
⟨Wz⟩

T (22)

and where ⟨Wx⟩ is a diagonal d by d matrix with ⟨wx⟩ along
its diagonal. Similarly, ⟨Wz⟩,9x,9z are d by d diagonal matrices
with diagonal vectors of ⟨wz⟩, ψx and ψz , respectively. The E-step
updates for Z and T are then:

⟨zi⟩ =
yi
ψy

1T6zz + xi⟨Wx⟩
T9−1

x 6tz (23)

⟨ti⟩ =
yi
ψy

1T6zz⟨Wz⟩9
−1
z K−1

+ xi⟨Wx⟩
T9−1

x 6tt (24)

σ 2
z = diag(6zz), σ 2

t = diag(6tt), cov(z, t) = diag(6zt). (25)

The final regression solution regularizes over the number of
retained inputs in the regression vector, performing a functionality
similar to Automatic Relevance Determination (ARD) (Neal, 1994).
It is important to notice that the resulting generalized EM updates
still have a computational complexity of O(d) for each EM iteration—
a level of efficiency that has not been accomplished with previous
Joint Factor Analysis regression models, especially with one
containing a full Bayesian treatment of JFA regression. Due to the
three mechanisms introduced above – (i) a latent variable model
to de-noise input data, (ii) an ARD framework to deal with high-
dimensional input data, and (iii) a variational approximation to
infer the regression solution quickly and efficiently – the result is
an efficient Bayesian algorithm that is robust to high dimensional
ill-conditioned noisy data.

3.3. Inference of regression solution

Estimating the rather complex probabilistic Bayesian model
for Joint Factor Analysis regression gives us the distributions and
mean values for all hidden variables. However, one additional
step is required to infer the final regression parameters, which,
in our application, are the RBD parameters. For this purpose, we
consider the predictive distribution p(yq|xq) for a new noisy test
input xq and its unknown output yq. We can calculate ⟨yq|xq⟩, the
mean of the distribution associated with p(yq|xq), by conditioning
yq on xq and marginalizing out all hidden variables. Since an
analytical solution of the resulting integral is only possible for the
probabilistic Joint Factor Analysis regressionmodel in Fig. 1(b) and

not for the full Bayesian treatment, we restrict our computations
to this simpler probabilistic model, and assume that Wx and Wz
are replaced by their point estimates ⟨Wx⟩ and ⟨Wz⟩, such that our
results will hold in approximation for the Bayesian model.

Thus, the predictive distribution is:

p(yq|xq,X, Y) =

∫∫
p(yq, Z, T|xq,X, Y)dZdT (26)

where X and Y are noisy input and noisy output data used
for training. From solving this integral, can infer the value of
the regression estimate β̂, since ⟨yq|xq⟩ = β̂

T
xq. The resulting

regression estimate, given noisy inputs xq and noisy outputs yq, is
β̂noise:

β̂noise =
ψy1TB−1

ψy − 1TB−11
9−1

z ⟨Wz⟩A−1
noise⟨Wx⟩

T9−1
x (27)

where 9x is a diagonal matrix with the vector ψx on its diagonal
(⟨Wx⟩, ⟨Wz⟩,9z are similarly defined diagonal matrices with
vectors of ⟨wx⟩, ⟨wz⟩ and ψz on their diagonals, respectively) and:

Anoise = I + ⟨WT
xWx⟩9

−1
x + ⟨WT

zWz⟩9
−1
z

B =


11T

ψy
+ 9−1

z − 9−1
z ⟨Wz⟩

TA−1
⟨Wz⟩9

−1
z


.

If we compare β̂noise in Eq. (27) to β̂JFA, the regression estimate
derived for Joint Factor Analysis regression, given below:

β̂JFA = WzA−1
JFAW

T
xΨ

−1
x (28)

AJFA = I + WT
xWxΨ

−1
x Wx

we can see that β̂noise contains an additional term ⟨WT
zWz⟩9

−1
z in

itsA expression, due to the introduction of hidden variables z. β̂noise
is scaled by an additional variance-related term because of this
issue as well.

It is important to note that the regression vector β̂noise given by
Eq. (27) is for optimal prediction from noisy input data. However,
for system identification in RBD, we are interested in obtaining the
true regression vector, which is the regression vector that predicts
the output from noiseless inputs. Thus, the result in Eq. (27) is
not quite suitable and what we want to calculate is the mean of
p(yq|tq), where tq are noiseless inputs. To address this issue, we
can take the limit of β̂noise by letting ψx → 0 and interpret the
resulting expression to be the true regression vector for noiseless
inputs (as ψx → 0, the amount of input noise approaches 0). The
resulting regression vector estimate β̂true becomes:

β̂true =
ψy1TC−1

ψy − 1TC−11
9−1

z ⟨Wz⟩
T
⟨Wx⟩

−1 (29)

where C =


11T
ψy

+ 9−1
z


, and this is the desired regression vector

estimate for noiseless data that we use in our evaluations.

4. Post-processing for physically consistent rigid body
parameters

Before our evaluations, we need to return for a moment
to the specifics of our intended application domain of RBD
parameter estimation. Given a Bayesian estimate of the RBD
parameters, we would like to ensure that the inferred regression
vector satisfies the constraints given by positive definite inertia
matrices and the parallel axis theorem (Landau & Lifschitz, 1984).
In our RBD estimation problem, there are 11 RBD parameters
for each DOF, which we arrange in an 11-dimensional vector
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θ consisting of the following parameters: mass, three center-
of-mass coefficients multiplied by the mass and six inertial
parameters. This choice of parameterization is the only one that is
identifiable using linear regression (An et al., 1988). Additionally,
we include viscous friction as the 11th parameter. In order to
enforce the aforementioned physical constraints, we introduce a
11-dimensional virtual parameter vector θ̂ that we assume is used
in a nonlinear transformation to generate θ, e.g., θ = f (θ̂). This
nonlinear transformation between virtual parameters θ̂ and actual
parameters θ is shown below for one DOF:

θ1 = θ̂
2
1

θ2 = θ̂2θ̂
2
1

θ3 = θ̂3θ̂
2
1

θ4 = θ̂4θ̂
2
1

θ5 = θ̂
2
5 +


θ̂
2
4 + θ̂

2
3


θ̂
2
1

θ6 = θ̂5θ̂6 − θ̂2θ̂3θ̂
2
1

θ7 = θ̂5θ̂7 − θ̂2θ̂4θ̂
2
1

θ8 = θ̂
2
6 + θ̂

2
8 +


θ̂
2
2 + θ̂

2
4


θ̂
2
1

θ9 = θ̂6θ̂7 + θ̂8θ̂9 − θ̂3θ̂4θ̂
2
1

θ10 = θ̂
2
7 + θ̂

2
9 + θ̂

2
10 +


θ̂
2
2 + θ̂

2
3


θ̂
2
1

θ11 = θ̂
2
11.

(30)

In essence, the virtual parameters θ̂ correspond to the square
root of the mass, the true center-of-mass coordinates (i.e., not
multiplied by the mass), a Cholesky decomposition (Nash, 1990)
of the DOF’s inertia matrix at the center of gravity to ensure
positive definiteness of the inertia matrix, and the square root of
the viscous friction coefficient. The functions in Eq. (30) encode the
parallel axis theorem and some additional constraints, ensuring
that the mass and viscous friction coefficients remain strictly
positive. Given the above formulation, any arbitrary set of virtual
parameters gives rise to a physically consistent set of actual
parameters for the RBD problem. For a robotic systemwith s DOFs,
Eq. (30) is repeated for each DOF. Since there are 11 features
for each DOF, the result is a 11s-dimensional regression vector θ,
where θm = fm(θ̂) (for m = 1, . . . , d where d = 11s).

There are at least two possibleways to enforce the physical con-
straints of RBD parameters in our Bayesian estimation algorithm.
The first (ideal) approach involves reformulating our algorithm
using the virtual parameters θ̂ described previously instead of the
actual parameters θ. Unfortunately, this methodwill lead to an an-
alytically intractable set of update equations due to the nonlinear
relationship between virtual and actual parameters. In the second
approach, we can consider a post-processing step, where the un-
constrained parameters are appropriately projected on to the con-
strained parameters. For this purpose, we assume that we would
like to find the optimal virtual parameters in a least squares sense,
i.e., by minimizing the cost function:

J =


1
2
(y − Xθ)T (y − Xθ)


(31)

where X and y are input and output data, and we have the
constraints of θm = fm(θ̂). For themoment, wewill ignore issues of
noise in input data and ill-conditioned data sets. Let us assume that
some arbitrary estimation algorithm generated an estimate for the

unconstrainedparameters as θuc . Thus, the constrainedparameters
can be written as θ = θuc + 1θ, where1θ denotes the difference
between constrained and unconstrained parameters. Substituting
this into Eq. (31) results in:

J =


1
2
(y − Xθ)T (y − Xθ)


=

1
2
⟨(y − Xθuc)

T (y − Xθuc)⟩ − ⟨(y − Xθuc)
T X1θ⟩

+
1
2
⟨1θTXTX1θ⟩. (32)

Minimizing this cost function with respect to the virtual param-
eters only requires consideration of the second and third terms
of Eq. (32), since the first term does not depend on the virtual
parameters.

Now, let us consider algorithms to generate θuc . Among the
most straightforward algorithms is OLS, which is equivalent to
reformulating Eq. (31) in terms of θuc :

Juc =


1
2
(y − Xθuc)

T (y − Xθuc)


, (33)

taking the derivative ∂ Juc
∂θuc

and setting it to zero:

∂ J
∂θuc

= − (y − Xθuc)
T X = 0. (34)

If we insert this result into Eq. (32), we see that the second term
of this cost function equals zero, leaving only the third term to be
considered in order to obtain the optimal virtual parameters. Thus,
we can conclude that for optimal projection of the unconstrained
parameters on to the constrained parameters, all we need to
do is to minimize the difference between unconstrained and
constrained parameters under the metric XTX.

We can consider other algorithms (other than OLS) to generate
θuc . For instance, SVD regression (Belsley et al., 1980) performs OLS
in a subspace of the original input dimensionality of the regression
problem. Thus, the cost functions in Eqs. (33) and (32) would be
formulated only over the input dimensions that were identified to
be relevant to the regression problem. Hence, the results regarding
the minimization of the difference between unconstrained and
constrained parameters hold as well.

More interestingly, if we use our Bayesian estimation method
to generate θuc , the result will be similar to SVD regression in
that some of the input dimensionswill be eliminated. Additionally,
the algorithm also estimates the noise in the inputs and returns a
regression vector that can be applied to noiseless query points. If
we re-express the noisy inputs X as Xt +Γ , where Xt are noiseless
inputs andΓ is the input noise, thenwe can re-write the third term
of Eq. (32) in terms of de-noised quantities:

1
2
1θT 

XT
t Xt


1θ. (35)

The second term of Eq. (32) does not yield exactly zero as in an OLS
regression, but, empirically, it is very close to zero, such that only
the term in Eq. (35) matters in the actual optimization problem.

In summary, we can see that in order to minimize the
least squared error in Eq. (31) with respect to the physically
constrained parameters of RBD, we can follow an approximate
two-step procedure. First, we apply our Bayesian algorithm (or
any other algorithm, for that matter) to come up with an
optimal unconstrained parameter estimate θuc . Then, we find the
virtual parameter estimates θ̂ (and the corresponding physically
consistent parameter estimates θ) such that the error between
θ and θuc is minimized in the sense of Eq. (35). If the noiseless
inputs are not estimated explicitly, the term Xt is replaced by
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the noisy inputs X. The optimization of Eq. (35) is easily achieved
numerically as it is a simple convex function with a unique global
minimum. If θuc is estimated by OLS or SVD regression, the results
for the constrained parameters are optimal. If θuc is estimated by
our Bayesian or any other nonlinear method, the results for the
constrained parameters are approximately optimal. Empirically,
we found that the above proposed procedure always achieves
satisfying results.

5. Evaluation

We evaluated our algorithm on both synthetic data and robotic
data for the task of system identification. The goal of these
evaluations was to determine how well our Bayesian de-noising
algorithm performs compared to other standard techniques for
parameter estimation in the presence of noisy input and noisy
output data.

First,we start by evaluating our algorithmona synthetic dataset
in order to illustrate its effectiveness at de-noising input and
output data. Then, we apply the algorithms on a 7 DOF robotic
oculomotor vision head, shown in Fig. 4, and on a 10 DOF robotic
anthropomorphic arm, shown in Fig. 5, for the task of parameter
estimation in rigid body dynamics.

5.1. Synthetic data set

We synthesized random input training data consisting of 10
relevant dimensions and 90 irrelevant and redundant dimensions.
The first 10 input dimensions were drawn from a multi-
dimensional Gaussian distribution with a random covariance
matrix. The output data were generated using an ordered
regression vector βtrue = [1, 2, . . . , 10]T . Output noise was added
with a signal-to-noise ratio (SNR) of 5. Then, we added Gaussian
noise with varying SNRs (a SNR of 2 for strongly noisy input data
and a SNR of 5 for less noisy input data) to the relevant 10 input
dimensions. A varying number of redundant data vectors was
added to the input data, and these were generated from random
convex combinations of the 10 noisy relevant data vectors. Finally,
we added irrelevant data columns, drawn from a Normal(0, 1)
distribution, until a total of 100 input dimensions was attained.
The result was an input training dataset that contained irrelevant
and redundant dimensions. Test data was created using the same
method outlined above, except that input and output data were
both noiseless.

We compared our Bayesian de-noising algorithm with the
following methods: (i) OLS regression; (ii) stepwise regression
(Draper & Smith, 1981), which tends to be inconsistent in the
presence of collinear inputs (Derksen & Keselman, 1992); (iii)
Partial Least Squares regression (PLS) (Wold, 1975), a slightly
heuristic but empirically successful regression method for high
dimensional data; (iv) LASSO regression (Tibshirani, 1996), which
gives sparse solutions by shrinking certain coefficients to zero
under the control of a manually set tuning parameter; (v) our
probabilistic treatment of Joint Factor Analysis regression in
Fig. 1(b); and (vi) our Bayesian de-noising algorithm shown in
Fig. 1(c). In this synthetic evaluation, there was no need to
constrain parameters according to some physical consistency
rules.

The Bayesian de-noising algorithm had an improvement of
10%–300% compared to other algorithms, as the black bars in Figs. 2
and 3 illustrate. One interesting observation is that for the case
where the 90 input dimensions are all irrelevant, the Bayesian de-
noising algorithm did not give a significant reduction in error as in
the other three scenarios. This result can be explained by the fact
that the other algorithms suffer primarily from redundant inputs,
but not so much from irrelevant inputs, which does not cause
numerical problems. The true power of our Bayesian algorithm lies
in its ability to identify the relevant dimensions in the presence of
redundant and irrelevant data.

Fig. 2. Average normalized mean squared errors (nMSE) on noiseless (clean) test
data for a 100 dimensional dataset with 10 relevant input dimensions and various
combinations of redundant input dimensions r and irrelevant input dimensions u,
averaged over 10 trials: input data has SNR = 2 and output data has SNR = 5.
Algorithms evaluated include OLS, stepwise regression (STEP), PLS regression (PLS),
LASSO regression (LASSO), Joint Factor Analysis regression (JFA) and our Bayesian
de-noising algorithm (BAYES).

Fig. 3. Average normalized mean squared errors (nMSE) on noiseless (clean) test
data for a 100 dimensional dataset with 10 relevant input dimensions and various
combinations of redundant input dimensions r and irrelevant input dimensions u,
averaged over 10 trials: input data has SNR = 5 and output data has SNR = 5.
Algorithms evaluated include OLS, stepwise regression (STEP), PLS regression (PLS),
LASSO regression (LASSO), Joint Factor Analysis regression (JFA) and our Bayesian
de-noising algorithm (BAYES).

5.2. Robotic oculomotor vision head

Next, we move on to a 7 DOF robotic vision head manufactured
by Sarcos Inc. (Salt Lake City, Utah) as shown in Fig. 4, possessing
3 DOFs in the neck and 2 DOFs for each eye. With 11 parameters
per DOF, this gives a total of 77 parameters for RBD estimation.
The kinematic structure of this robotic systems always creates non-
identifiable parameters and thus, redundancies in the parameter
estimation problem (An et al., 1988). The robot is controlled at
420 Hz with a VxWorks real-time operating system running out
of a VME bus. For the training set, we collected about 500,000
data points from the robotic system while it performed sinusoidal
movements with varying frequencies and phase offsets in all DOFs.

Of the six methods evaluated in the previous experiment on
synthetic data, OLS regression, PLS regression and JFA regression
failed to explicitly eliminate irrelevant input features and did
not perform any form of reasonable parameter identification.
For this reason, we omitted these three methods from the RBD
identification experiments, since the parameter results produced
by these methods would crash our robotic hardware. Instead,
we took the remaining three methods (stepwise regression,
LASSO regression and our Bayesian de-noising algorithm) and
augmented each with an additional projection step such that the
resulting parameter values would be physically consistent RBD
parameters. We compared these three algorithms with a hand-
crafted technique that consisted of OLS with ridge regression
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Fig. 4. Sarcos oculomotor vision head.

using a hand-tuned ridge regularization parameter. A nonlinear
gradient descent method identified the virtual parameters of the
system based on the unconstrained parameter estimate. All four
algorithms produced physically consistent RBD parameters.

For evaluation, we implemented a computed torque control
law on the robot (Sciavicco & Siciliano, 1996), using estimated
parameters from each technique. Results are quantified as the root
mean squared errors in position tracking, velocity tracking and
the root mean squared feedback command. The left columns of
Figs. 6–8 show these results averaged over all 7 DOFs of the robot’s
head. TheBayesian parameter estimation approach, shown in black
bars, performed around 10%–25% better than ridge regressionwith
nonlinear gradient descent. LASSO regression performed worse
than ridge regression, and stepwise regression produced RBD
parameters thatwere so physically off that theywere impossible to
run on the robotic head (hence, the lack of rootmean squared error
bars for stepwise regression in the figures). This can be explained
by stepwise regression’s failure to identify the relevant features in
the dataset, resulting in RBD parameter values that were plainly
wrong.

5.3. Robotic anthropomorphic arm

We also evaluated the parameter estimation algorithms on a 10
DOF robotic anthropomorphic arm made by Sarcos Inc. (Salt Lake
City, Utah), shown in Fig. 5. With 3 DOFs in the shoulder, 1 DOF
in the elbow, 3 DOFs in the wrist and 3 DOFs in the fingers, we
obtained a total of 110 regression parameters. We collected about
a million data points from the robotic arm over a period of 40 min,
gathering data at a rate of 480 samples per second. During this time
period, the arm performed sinusoidal movements with varying
frequencies and phase offsets in all DOFs. We downsampled the
data collected to amoremanageable size of 500,000 and evaluated
the algorithms in a similar approach as for the robotic vision head.
The right columns of Figs. 6–8 display the results averaged over
all 10 DOFs of the robot arm. The Bayesian parameter estimation
approach, shown in the black bars, performed around 5%–20%
better than the other techniques. LASSO regression failed, due to

Fig. 5. Sarcos anthropomorphic arm.

Fig. 6. Average root mean squared error (rMSE) for position in radians for the
robotic vision head (averaged over all 7 DOFs) and the anthropomorphic arm
(averaged over all 10 DOFs). Algorithms that do not have error bars indicate a
failure to produce estimates that could be run on the robot. Algorithms evaluated
include ridge regression with nonlinear gradient descent, stepwise regression with
the projection step (STEP), LASSO regression with the projection step (STEP), and
our Bayesian de-noising algorithm (BAYES). Standard deviations are negligible and
thus omitted.

its over-aggressive clipping of relevant dimensions, and stepwise
regression produced RBD parameters that were impossible to run
on the robotic arm.

6. Discussion

This paper addresses the problem of learning for system iden-
tification, as, for example, in a scenario where we have observed a
system through empirical data and would like to uncover its true
parameters. Learning for system identification differs from learn-
ing for prediction. Learning for prediction is the more common
problem setting in many machine learning techniques for regres-
sion. Good prediction is often possible without modeling all com-
ponents of the generative system. For example, if we were solely
interested in prediction, it is possible to predict well in the pres-
ence of noisy test input data by using a regression estimate that
is not the true regression solution (e.g., βtrue). However, if our in-
tention is to estimate βtrue and not just to predict what the output
should be, then using linear regression will fail since it is not built
to deal with noise in the input data.

The interesting new component of system identification –
where the regression parameters are estimated – comes from
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Fig. 7. Average root mean squared error (rMSE) for velocity in rad/s for the robotic
vision head (averaged over all 7 DOFs) and the anthropomorphic arm (averaged
over all 10 DOFs). Algorithms that do not have error bars indicate a failure to
produce estimates that could be run on the robot. Algorithms evaluated include
ridge regression with nonlinear gradient descent, stepwise regression with the
projection step (STEP), LASSO regression with the projection step (STEP), and our
Bayesian de-noising algorithm (BAYES). Standard deviations are negligible and thus
omitted.

Fig. 8. Average root mean squared error (rMSE) for feedback command in
Newton-meters for the robotic vision head (averaged over all 7 DOFs) and the
anthropomorphic arm (averaged over all 10 DOFs). Algorithms that do not have
error bars indicate a failure to produce estimates that could be run on the robot.
Algorithms evaluated include ridge regression with nonlinear gradient descent,
stepwise regression with the projection step (STEP), LASSO regression with the
projection step (STEP), and our Bayesian de-noising algorithm (BAYES). Standard
deviations are negligible and thus omitted.

the desire to use the identified model in other ways than in the
training scenario. In robotics, a typical example is the use of the
system model for prediction with noiseless input data. In this
scenario, the training data might have been contaminated by a
large amount of input noise. Another typical application is to
create an analytical inverse of an identified model as often needed
in model-based control. For such applications, the system model
needs to be identified as accurately as possible. This is only possible
if all parameters of the data generating model (in particular all
noise processes) are identified accurately.

As an aside, note that if the robotic plant is changed (say, a
forearm falls off or an eye stops working on the humanoid), then
the current method, as well as most learning methods, would not
be robust. The system will have changed drastically in structure in
a way that cannot be accounted for by adding noise (or outliers,
which, by definition, are infrequent, spurious data samples) to
the sensory data. Our model can be adjusted to account for
such failure scenarios by incorporating continuous online learning
mechanisms or a switching system that switches to ‘‘failure’’mode.

We address linear system identification for situations where
noise exists in both input and output data—a typical case in most

robotic applications where data is derived from noisy sensors.
Additionally, we allow for the case of hundreds or thousands
of input dimensions, where many dimensions are potentially
redundant or irrelevant. To date, no efficient and robust algorithm
has been suggested for such a problem setup. Inspired by factor
analysis regression, a classical machine learning technique, we
develop a novel full Bayesian treatment of the linear system
identification problem. Due to effective Bayesian regularization,
this algorithm is robust to high dimensional, ill-conditioned data
with noise-contaminated input and output data and remains
computationally efficient, i.e., O(d) per iteration of the underlying
EM-like algorithm,where d is the number of input dimensions. This
algorithm has no parameters that need manual tuning.

We used this algorithm to estimate parameters in rigid body
dynamics—an estimation problem that is linear in the unknown
parameters. Since these parameters have a physical meaning, it
was necessary to enforce physical consistent parameters with a
post-processing step. The physical constraints arose from positive
definiteness of inertia matrices, positiveness of mass parameters,
and the parallel axis theorem. We demonstrated the efficiency
of our algorithm by applying it to a synthetic dataset, a 7 DOF
robotic vision head and a 10 DOF robotic anthropomorphic arm.
Our algorithm successfully identified the system parameters with
10%–300% higher accuracy than alternative methods on synthetic
data for parameter estimation in linear regression. It performed
5%–25% better on real robot data, proving to be a competitive
alternative for parameter estimation on complex high degree-of-
freedom robotic systems.

If desired, our Bayesian algorithm can easily be extended
to nonlinear system identification in the framework of Locally
Weighted Learning (LWL) (Atkeson et al., 1997). The only mod-
ification needed is to change the linear regression problem to
a Bayesian weighted linear regression problem (Gelman, Carlin,
Stern, & Rubin, 2000). Thus, a piecewise linearmodel identification
can be achieved, similar to (Schaal & Atkeson, 1998; Vijayakumar,
D’Souza, & Schaal, 2005). Parameters identified in such a nonpa-
rameteric way usually lack any physical interpretability, such that
our suggested post-processing to enforce physical correctness of
the parameters is not applicable. We will address the full nonlin-
ear system identification problem in future work.
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